Stochastic differential equations in Hilbert spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Stochastic Partial Differential Equations and Submanifolds in Hilbert Spaces

The goal of this appendix is to provide results about stochastic partial differential equations driven by Wiener processes and Poisson measures and results about submanifolds in Hilbert spaces. It should serve as a reference for auxiliary results that we require in [7].

متن کامل

Controllability of Stochastic Semilinear Functional Differential Equations in Hilbert Spaces

In this paper approximate and exact controllability for semilinear stochastic functional differential equations in Hilbert spaces is studied. Sufficient conditions are established for each of these types of controllability. The results are obtained by using the Banach fixed point theorem. Applications to stochastic heat equation are given.

متن کامل

stochastic differential inclusions of semimonotone type in hilbert spaces

in this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in f(t,x(t))dt +g(t,x(t))dw_t$ in which the multifunction $f$ is semimonotone and hemicontinuous and the operator-valued multifunction $g$ satisfies a lipschitz condition. we define the it^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Stochastic Volterra Differential Equations in Weighted Spaces

In the following paper, we provide a stochastic analogue to work of Shea and Wainger by showing that when the measure and state-independent diffusion coefficient of a linear Itô–Volterra equation are in appropriate Lp– weighted spaces, the solution lies in a weighted Lp–space in both an almost sure and moment sense.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Center Publications

سال: 1979

ISSN: 0137-6934,1730-6299

DOI: 10.4064/-5-1-53-74